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1 Introduction

Stable distributions are a fascinating and fruitful area of research in probability
theory; furthermore, nowadays, they provide valuable models in physics,
astronomy, economics, and communication theory, see e.g. .......

The general class of stable distributions was introduced and given this
name by the French mathematician Paul Lévy in the early 1920’s, see Lévy
(1923,1924,1925).

Formerly, the topic attracted only moderate attention from the leading
experts, though there were also enthusiasts, of whom the Russian mathemati-
cian Alexander Yakovlevich Khintchine should be mentioned first of all. The
inspiration for Lévy was the desire to generalize the celebrated Central Limit
Theorem, according to which any probability distribution with finite variance
belongs to the domain of attraction of the Gaussian distribution. The concept
of stable distributions took full shape in 1937 with the appearance of Lévy’s
monograph [63], soon followed by Khintchine’s monograph [46]2.

1LaTeX file fm
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2Nowadays F. Mainardi and S. Rogosin, with the aim of reevaluating the work of

Khintchine on limit theorems of sums of independent variables (not necessarily identically
distributed), are planning to translate into English (from the Russian, Italian, German and
French) the relevant papers by Khintchine and also a number of related papers by De Finetti,
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The theory and properties of stable distributions have been systematically
presented by Gnedenko & Kolmogorov [26] and Feller [?]. These distribution
are also discussed in some other classical books in probability theory including
Lukacs (1960-1970), Feller (1966-1971), Breiman (1968-1992), Chung (1968-
1974) and Laha & Rohatgi (1979). Also treatises on fractals devote
particular attention to stable distributions in view of their properties of
scale invariance, see e.g. Mandelbrot (1982) and Takayasu (1990). It is only
recently that monographs devoted solely to stable distributions and related
stochastic processes have been appeared, i.e. Zolotarev (1983-1986), Janicki
& Weron (1994), and Samorodnitsky & Taqqu (1994), Uchaikin & Zolotarev
(1999), Nolan (????). In these books tables and/or graphs related to stable
distributions are also exhibited. Previous sets of tables and graphs have been
provided by Mandelbrot & Zarnfaller (1959), Fama & Roll (1968), Bo’lshev &
Al. (1968) and Holt & Crow (1973).

Stable distributions have three exclusive properties, which can be briefly
summarized stating that they 1) are invariant under addition, 2) possess their
own domain of attraction, and 3) admit a canonical characteristic function.

In the following sections let us illustrate the above properties which,
providing necessary and sufficient conditions, can be assumed as equivalent
definitions for a stable distribution. We recall the basic results without proof.

2 Invariance under addition

A random variable X is said to have a stable distribution P (x) = Prob {X ≤
x} if for any n ≥ 2 , there is a positive number cn and a real number dn such
that

X1 + X2 + . . . + Xn
d
= cn X + dn , (2.1)

where X1, X2, . . .Xn denote mutually independent random variables with

common distribution P (x) with X . Here the notation
d
= denotes equality in

distribution, i.e. means that the random variables on both sides have the same
probability distribution.

When mutually independent random variables have a common distribution
[shared with a given random variable X], we also refer to them as independent,
identically distributed (i.i.d) random variables [independent copies of X]. In

Lévy, Kolmogorov, Gnedenko, Feller, that have been source of inspiration for Khintchine
himself. The 1938 book by Khintchine has already been translated from the Russian by
Rogosin
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general, the sum of i.i.d. random variables becomes a random variable with
a distribution of different form. However, for independent random variables
with a common stable distribution, the sum obeys to a distribution of the same
type, which differs from the original one only for a scaling (cn) and possibly
for a shift (dn). When in (A.1) the dn = 0 the distribution is called strictly
stable.

It is known, see [20], that the norming constants in (2.1) are of the form

cn = n1/α with 0 < α ≤ 2 . (2.2)

The parameter α is called the characteristic exponent or the index of stability
of the stable distribution. We agree to use the notation X ∼ Pα(x) to
denote that the random variable X has a stable probability distribution with
characteristic exponent α . We simply refer to Pα(x) , pα(x) := dPα(x)/dx
(probability density functions = pdf) and X as α-stable distribution, density,
random variable, respectively.

Definition (2.1) with theorem (2.2) can be stated in an alternative version
that needs only two i.i.d. random variables. see also Lukacs (1960-1970).
A random variable X is said to have a stable distribution if for any positive
numbers A and B, there is a positive number C and a real number D such that

A X1 + B X2
d
=C X + D , (2.3)

where X1 and X2 are independent copies of X . Then there is a number α ∈
(0, 2] such that the number C in (2.3) satisfies Cα = Aα + Bα .

For a strictly stable distribution Eq. (2.3) holds with D = 0 . This implies
that all linear combinations of i.i.d. random variables obeying to a strictly
stable distribution is a random variable with the same type of distribution.

A stable distribution is called symmetric if the random variable −X has
the same distribution. Of course, a symmetric stable distribution is necessarily
strictly stable.

Noteworthy examples of stable distributions are provided by the Gaussian
(or normal) law (with α = 2) and by the Cauchy-Lorentz law (α = 1). The
corresponding pdf ′s are known to be

pG(x; σ, µ) :=
1√
2π σ

e−(x − µ)2/(2σ2) , x ∈ R , (2.4a)

where σ2 denotes the variance and µ the mean, and

pC(x; γ, δ) :=
1

π

γ

(x − δ)2 + γ2
, x ∈ R , (2.5a)
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where γ denotes the semi-interquartile range and δ the ”shift”. The
corresponding (cumulative) distribution functions are

PG(x; σ, ) :=
1

2

[

1 + erf

(
x√
2σ

)]

, x ∈ R , (2.4b)

and

PC(x; γ, 0) =
1

2
+

1

π
arctan

(
x

γ

)

, x ∈ R . (2.5b)

3 Domain of attraction

Another (equivalent) definition states that stable distributions are the only
distributions that can be obtained as limits of normalized sums of i.i.d. random
variables. A random variable X is said to have a domain of attraction,i.e.
if there is a sequence of i.i.d. random variables Y1, Y2, . . . and sequences of
positive numbers {γn} and real numbers {δn}, such that

Y1 + Y2 + . . . Yn

γn
+ δn

d⇒X . (3.1)

The notation
d⇒ denotes convergence in distribution.

If the random variable X has a stable distribution and all Yi are taken to
be independent and distributed like X , then clearly (2.1) implies (3.1), and
so trivially every random variable with a stable probability distribution has a
domain of attraction. The converse is also true, namely that every random
variable with a domain of attraction has a stable probability distribution, see
[26]. Therefore we can alternatively state that a random variable X is said to
have a stable distribution if it has a domain of attraction.

When X is Gaussian and the Y ′

i s are i.i.d. with finite variance, then (3.1)
is the statement of the ordinary Central Limit Theorem. The domain of
attraction of X is said normal when γn = n1/α ; in general, γn = n1/α h(n)
where h(x) , x > 0 , is a slow varying function at infinity3 The function
h(x) = ln x , for example, is slowly varying at infinity: it enters in a general

3
Definition: We call a (measurable) positive function a(y), defined in a right

neighbourhood of zero, slowly varying at zero if a(cy)/a(y) → 1 with y → 0 for every
c > 0. We call a (measurable) positive function b(y), defined in a neighbourhood of infinity,
slowly varying at infinity if b(cy)/a(y) → 1 with y → ∞ for every c > 0. Examples: (log y)γ

with γ ∈ R and exp (log y/log log y).
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theorem on the domain of attraction of the Gaussian law for distributions with
infinite variance (in particular densities decaying as |x|−3), as formerly shown
independently by Khintchine, Lévy and Feller, see e.g. [46, 26, 20].

4 Canonical forms for the characteristic func-

tion

Another definition specifies the canonical form that the characteristic function
(cf) of a stable distribution of index α must have. Let us recall that the cf
is the Fourier transform of the pdf . If we denote by pα(x; ·) the pdf for a
generic stable distribution of index α (the · stands for additional parameters)
the corresponding cf reads in our notation

p̂α(κ; ·) := 〈exp iκX〉 =
∫ +∞

−∞

eiκx pα(x; ·) dx ÷ pα(x; ·) ,

where ÷ denotes the juxtaposition of a function with its Fourier transform.
We note that the cf of the most popular stable distributions, the Gaussian

(2.4) and the Cauchy-Lorentz (2.5), turn out to be

p̂G(κ; σ) = e−(σ2/2) |κ|2 , (4.1)

p̂c(κ; γ) = e−γ|κ| . (4.2)

Let first consider the (simplified) canonical form for strictly stable
distributions adapting from that formerly introduced by Feller [19, 20] and
Zolotarev [92, 90]. Using our notation this canonical forms reads

p̂α(κ; θ) := exp
{
−|κ|α e i(sign κ) θ π/2

}
, (4.3)

were θ is a real parameter whose domain is restricted to the following region
(depending on α)

|θ| ≤
{

α , if 0 < α ≤ 1 ,
2 − α , if 1 < α ≤ 2 .

(4.4)

We recognize that pα(x, θ) = pα(−x,−θ) , so the symmetric stable distributions
are obtained if and only if θ = 0 ; θ is called the asymmetry parameter, or
simply (but improperly) skewness.

In the plane {α , θ} the allowed region for the parameters α and θ {0 <
α ≤ 2 , |θ| ≤ min (α, 2 − α)} turns out to be a diamond with vertices in the
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Figure 1: The Feller-Takayasu diamond

points (0, 0) , (1, 1) , (2, 0) , (1,−1) , that was formerly depicted in Takayasu’s
book, see Fig. 1. Honouring both Feller and Takayasu, we call the described
region the Feller-Takayasu diamond.

We note that in his original and pioneering paper [19], Feller used a
skewness parameter δ different from our θ ; in fact his characteristic function
turns out to be

p̂F
α (κ; δ) := exp

{
−
[
|κ| e−i (sign κ) δ

]α}
, so δ = −π

2

θ

α
, θ = −2

π
αδ .

(4.5)
In his two books [92, 90] Zolotarev used a notation which is confusing and
misleading due to irritating misprints: as matter of fact one can recognizes that
two different canonic forms are used for strictly stable distributions, namely

p̂Z
α(κ; δ1,2) :=






exp
{
−|κ|α e−i(sign κ) δ1 α π/2

}
,

exp
{
−|κ|α e−i(sign κ) δ2 π/2

}
.

(4.6)

Our notation is in agreement with that adopted by Schneider (1986) [he,
however, uses the letter β instead of θ] and Takayasu (1990) [see (5.23)-(5.24),
p. 124], but all of them neglect the case α = 1.

Feller has proved that, assuming 1/2 < α < 1 and x > 0 ,

1

xα+1
p1/α(x−α; θ) = pα(x; θ∗) , θ∗ = α(θ + 1) − 1 . (4.7)
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A quick check shows that θ∗ falls within the prescribed range, |θ∗| ≤ α ,
provided that |θ| ≤ 2 − 1/α .

Stable distributions with extremal values of the skewness parameter are
called extremal. One can prove that all the extremal stable distributions with
0 < α < 1 are one-sided, the support being R+

0 if θ = −α , and R−

0 if θ = +α .
For 0 < α < 2 the stable distributions exhibit heavy tails in such a way

that their absolute moment of order ν is finite only if ν < α . In fact one can
show that for non-Gaussian, not extremal, stable distributions the asymptotic
decay of the tails is

pα(x; θ) = O
(
|x|−(α+1)

)
, x → ±∞ . (4.8)

For the extremal distributions this is valid only for one tail, the other being
of exponential order. For 0 < α < 1 we have one-sided distributions which
exhibit an exponential left tail (as x → 0+) if θ = −α , or an exponential right
tail (as x → 0−) if θ = +α . For 1 < α < 2 the extremal distributions are
two-sided and exhibit an exponential left tail (as x → −∞) if θ = +(2 − α) ,
or an exponential right tail (as x → +∞) if θ = −(2 − α) .

Consequently, the Gaussian distribution is the unique stable distribution
with finite variance. Furthermore, when α ≤ 1 , the first absolute moment
〈|X|〉 is infinite as well, so we need to use the median to characterize the
expected value.

However, there is a fundamental property shared by all the stable
distributions that we like to point out: for any α the corresponding stable
pdf is unimodal and indeed bell-shaped, i.e. its n-th derivative has exactly n
zeros, see Gawronski (1984).

From Lévy’s times it is usual to adopt a more general canonical form for
stable distributions that takes into account of a scale parameter γ > 0, of a
shift parameter δ ∈ R in addition to a skewness parameter β ∈ R restricted to
be |β| ≤ 1. For this class of stable distributions, partly following the notation
of Samorodnitsky & Taqqu (1994) and denoting by Y the random variable, we
write Y ∼ Qα(y; β, γ, δ) with characteristic function

q̂α(κ; β, γ, δ) = exp {iδκ − γα |κ|α [1 + i (sign κ) β ω(|κ|, α)]} , (4.9)

where

ω(|κ|, α) =
{

tan (α π/2) , if α 6= 1 ,
−(2/π) ln |κ| , if α = 1 .

(4.10)

Consequently a random variable Y is said to have a stable distribution if there
are four real parameters α, β, γ, δ with 0 < α ≤ 2 , −1 ≤ β ≤ +1 , γ > 0 , such
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that its characteristic function has the canonical form (4.9)-(4.11). We note
that the parameter β appears with different signs for α 6= 1 and α = 1 . This
minor point has been the source of great confusion in the literature, see Hall
(1980) for a discussion. The presence of the logarithm for α = 1 is the source
of many difficulties, so this case has often to be treated separately.

An interesting problem is related to the inclusion of the canonical form
(4.3)-(4.4), which is valid only for strictly stable distributions in the more
general canonical form (4.9)-(4.10) We first note that the two parameters γ and
δ in (4.9), being related to a scale transformation and a translation respectively,
are not so essential since they do not change the shape of the distribution. If
we take γ = 1 and δ = 0 , we obtain the so-called standardized form of the
stable distribution and the corresponding random variable Y ∼ Pα(y; β, 1, 0) is
referred to as the α-stable standardized random variable. On the other hand,
keeping δ = 0, we can choose the scale parameter γ in such a way to get the
simplified canonical form for strictly stable distributions. As a matter of fact
the relation between the two classes X and Y for stable random variables can
be explored if we compare the corresponding canonical forms not only keeping
δ = 0 but also assuming α 6= 1, as shown below.

We easily recognize

γα = cos
(
θ

π

2

)
, tan

(
θ

π

2

)
= β tan

(
α

π

2

)
, (4.11)

so the case α = 1 must be excluded. Thus, the Feller-Takayasu canonical
form for strictly stable distributions with index α 6= 1 and skewness θ , can
be obtained from the Lévy canonical form if we (implicitly) select the shift
parameter δ = 0, and the scale parameter γ and the skewness parameter β
related to α and θ according to (4.11). We note that necessarily 0 < γ ≤ 1. We
also note that for α = 1 we have identity between the two canonical forms in
the limiting case θ = β = 0 corresponding to the (symmetric) Cauchy-Lorentz
pdf . By the way for α = 1 with δ = 0 and β 6= 0 the general Lévy canonical
form yields not strictly stable distributions.

Specifically, the random variable X ∼ Pα(x; θ) turns out to be related to
the standardized random variable Y ∼ Qα(y; β, 1, 0) by the relations:

X = Y/γ , qα(y; β, 1, 0) = γ pα(x = γy; θ) , (4.12)

with
γ = [cos (θπ/2)]1/α , (4.13)

and

θ = (2/π) arctan [β tan (απ/2)] , β =
tan (θπ/2)

tan (απ/2)
. (4.14)
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We note that for the symmetric stable distributions we get the identity between
the standardized and the Lévy canonical forms, since in (4.14) β = θ = 0
implies in (4.13) γ = 1 . A particular but noteworthy case is provided
by p2(x; 0) = q2(y; 0, 1, 0) corresponding to the Gaussian distribution with
variance σ2 = 2 . The identity is valid also in the limit for α = 1, for which
p1(x; 0) = q1(y; 0, 1, 0) corresponding to the Cauchy-Lorentz distribution with
semi-interquartile γ = 1 .

The extremal stable distributions corresponding to β = ±1 and α 6= 1 are
obtained in the Feller-Takayasu representation for θ = ±α if 0 < α < 1 , and
for θ = ∓(2 − α) if 1 < α < 2 . For these cases, the scaling parameter turns
out to be γ = [cos (|α| π/2)]1/α .

It may be an instructive exercise to carry out the inversion of the Fourier
transform when α = 1/2 and θ = −1/2 . In this case we obtain the analytical
expression for the corresponding extremal stable pdf , known as the (one-sided)
Lévy-Smirnov density,

p1/2(x;−1/2) =
1

2
√

π
x−3/2 e−1/(4x) , x ≥ 0 . (4.15)

The corresponding standardized form for this distribution can be easily
obtained from (4.15) using (4.12)-(4.14) with α = 1/2 and θ = −1/2 . We
get γ = [cos (−π/4)]2 = 1/2 , β = −1 , so

q1/2(y;−1, 1, 0) =
1

2
p1/2(y/2;−1/2) =

1√
2π

y−3/2 e−1/(2y) , y ≥ 0 , (4.16)

in agreement with Holt & Crow (1973) [§2.13, p. 147].
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aléatoires) No 116 pp. 342-344, Gauthier-Villars, Paris, 1976.]
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